
1

An Introduction to

Model-Based Testing

Jan Tretmans

Embedded Systems Institute, Eindhoven, NL

and Radboud University, Nijmegen, NL

2

checking or measuring some quality aspects

of an executing object

by performing experiments

in a controlled way

w.r.t. a specification

tester

specification
SUT

System Under Test

(Software) Testing

3

SUT

System Under Test

pass fail

Developments in Testing 1

1. Manual testing

4

SUT

pass fail

test

execution

TTCNTTCNtest

cases

1. Manual testing

2. Scripted testing

Developments in Testing 2

5

SUT

pass fail

test

execution

1. Manual testing

2. Scripted testing

3. High-level

scripted testing

Developments in Testing 3

high-level

test notation

6

system

model

SUT

TTCNTTCNTest

cases

pass fail

model-based

test

generation

test

execution

1. Manual testing

2. Scripted testing

3. High-level

scripted testing

4. Model-based

testing

Developments in Testing 4

7

Models
?coin

?button

!alarm ?button

!coffee

modelSelected

workingConfiguration

noModelSelected

validConfiguration

addComponent(slot, component)

send mopdelDB: findComponent()

send slot:bind()

removeComponent(slot)

send slot:unbind()

addComponent(slot, component)

send Component_DB: get_component()

send slot:bind

deselectModel()

selectModel(model)

send modelDB: getModel(modelID,this)

removeComponent(slot)

send slot:unbind()

isLegalConfiguration()

[legalConfig = true]

(Klaas Smit)

8

Sorts of Testing

unit

integration

system

efficiency

maintainability

functionality

white box black box

phases

accessibility

aspects

usability

reliability

module

portability

9

Model-Based Testing: Why

• Mastering increase in complexity, and quest for higher quality

– testing cannot keep pace with development

• Dealing with models and abstraction

– model-based development: UML, MDA, Simulink/Matlab

• Promises better, faster, cheaper testing

– algorithmic generation of tests and test oracles: tools

– maintenance of tests through model modification

Software bugs / errors cost US economy yearly:
$ 59.500.000.000 (www.nist.gov)
$ 22 billion could be eliminated…

http://www.nist.gov/

10

requirements

model

idea

s

SUT

Model-Based Testing: The Process

test

generator

TTCNTTCNtest

cases

test

executor

adapter

adapter
verdict

test result

analysis

off-line

on-line

11

SUT passes tests

SUT

conforms to

model



system

model

SUT

TTCNTTCN
Test

cases

pass fail

test

execution

model-based

test

generation

Model-Based Testing: Some Theory

SUT

conforms to

model

12

Model-Based Testing: Some Theory

LTS

model

SUT

TTCNTTCN
Test

cases

pass fail

LTS

test

execution

ioco

test

generation

input/output

conformance

ioco

set of

LTS tests

SUT passes tests

SUT ioco model



13

• AETG

• Agatha

• Agedis

• Autolink

• Conformiq

Qtronic

• Cooper

• Uppaal-Cover

• Gst

• Gotcha

• JTorX

• MaTeLo

• ParTeG

• Phact/The Kit

• QuickCheck

• Reactis

• RT-Tester

• SaMsTaG

• Smartesting

Test Designer

• Spec Explorer

• Statemate

Model-Based Testing: Some Tools

• STG

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TGV

• TorX

• TorXakis

• T-Vec

• Uppaal-Tron

• Tveda

•

14

Model-Based Testing: Some Challenges

1. How to get a model

2. Adapter development

3. Test selection, a-priori coverage

4. Quality of tested systems, posterior coverage

5. Relation to other model-based activities, diagnosis

6. Non-functional testing: performance, security,

7. Integration in the testing process

8. Education for MBT

9. Scalability

10.ROI: Return on Investment

15

And now:

1. Neda Noroozi

Model-based testing of electronic funds transfer systems

2. Axel Belinfante

Model-based testing of a wireless sensor network node

3. Marten Sijtema

Experiences with formal engineering: Model-based specification,

implementation, and testing of a software bus

